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ABSTRACT

Gastric cancer is the fourth most lethal malignancy worldwide.
Esophagogastroduodenoscopy is the first choice procedure for di-
agnosis of upper gastrointestinal lesions, especially early gastric
cancer. The success of this procedure depends on endoscopist’s
skill and the rigorous exploration of the zones with high probability
of being affected. It has been documented most gastric neoplasias
are lesions already existent at the examination time and unobserved
when early detection is possible. For a second reader, automatic
strategies must first recognize gastric anatomic regions. The aim
of this paper is to assess the performance of convolutional neural
networks at classifying anatomical regions. 2.054 raw upper gas-
trointestinal endoscopic images from 96 patients were collected and
labeled as six representative sub-anatomical stomach regions. The
networks were trained with transfer learning, data augmentation,
and two efficient learning methods: warm-up and fine-tuning. The
top-10 macro F1-score rates of the testing dataset were 84% to
87%. These preliminary tests suggest the trained networks showed
good performance in recognizing sub-anatomical stomach regions
of esophagogastroduodenoscopy images.

Index Terms— Gastric cancer, esophagogastroduodenoscopy,
CNN, sub-anatomical regions, computer-assisted.

1. INTRODUCTION

Gastric cancer (GC) is the fourth most common cause of cancer
death worldwide and the fifth most common malignancy [1]. De-
spite the incidence decreasing in some world regions, gastric can-
cer remains a major clinical challenge since most cases are diag-
nosed in advanced stages, i.e., poor prognosis and limited treatment
options. In recent decades, endoscopic technology has seen ad-
vances and is widely used as a screening test for early gastric can-
cer (EGC) [2]. Esophagogastroduodenoscopy (EGD) is a diagnos-
tic endoscopic procedure that includes visualization of the esoph-
agus, stomach, and proximal duodenum. However, gastroenterolo-
gists have documented to miss between 20%–40% for EGC [3]. The
Japan Gastroenterological Endoscopy Society developed a guide-
line for endoscopic diagnosis of EGC [4], mainly focused on the
technical skills to examine the upper gastrointestinal tract. During
the endoscopy, to avoid blind spots, K. Yao proposed a systematic
screening protocol for the stomach (SSS) [5]. Overall, the SSS com-
prises a series of endoscopic photos of four quadrants of the gas-
tric antrum, body, and middle–upper body. In practice, guidelines to
map the entire stomach do exist but they are often partially followed,

especially in developing countries [6]. Therefore, it is desirable to
develop reliable methods to alert endoscopists about possible EGC
lesions and blind spots. In this context, a potential solution is to ap-
ply a computer-aided diagnosis system to improve the daily clinical
workflow, becoming a “third eye or second reader” for gastroenterol-
ogists. In recent years, convolutional neural networks (CNNs) have
been broadly applied in the medical domain [7], particularly in en-
doscopy [8], even though most researchers have focused on detect-
ing lesions, and little attention has been paid to assessing the quality
of the endoscopy routine. Therefore, AI algorithms are required to
automatically recognize anatomical landmarks of the upper gastroin-
testinal that can be integrated with the actual exploration procedure.

Takiyama et al. [9] use GoogleNet architecture to recognize four
categories (larynx, esophagus, stomach, and duodenum), classifying
the anatomical location correctly for 16.632 (97%) out of 17.081
images. Wu et al. [10] divided the gastric locations into 10 and
subdivided it into 26 anatomical parts, the CNN correctly identi-
fied EGD images with accuracy rates were 90% and 65, 9% respec-
tively. Based on CNN and deep reinforcement learning were moni-
tored blind spots with an average accuracy of 90,02% in 107 videos.
[11]. Li et al. [12] trained an Inception-V3 and LSTM with 170.297
frames and 3.100 EGD images for testing, the authors reported per-
formance of CNN for recognition of gastric sites in images were
97, 18%, 99, 91%, and 99, 83% of sensitivity, specificity, and accu-
racy respectively. Recently, Chang et. al. [13] trained a ResNeSt ar-
chitecture with 15.305 images and the model was tested with 1.330
frames obtaining an accuracy of 96, 64%. All these strategies are
studies that have presented similar tasks using CNNs on EGD im-
ages. Still, a comparison of the performance of different state-of-
the-art architectures under similar conditions has not been made.

The main contributions of this paper are two-fold: First, as far as
we know, this work is the first study detecting actual stomach regions
with a benchmark study of 23 representative deep neural network
architectures. Those nets were customized using a transfer learning
strategy comprising warmup and fine-tuning phases, and 4 hyper-
parameter optimization. Second, this benchmark study can direct
future research on applying automatic image classification of gastric
regions classification.

2. METHODOLOGY

Upper gastrointestinal endoscopy or EGD represents the most com-
mon procedure in gastroenterology and therefore the most impor-
tant to be performed with a minimum of quality. In practice, it has
been reported that the exploration protocol and the order of visiting
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Fig. 1. Pipeline of the proposed approach. (a) anatomical EGD sub-category (see Section 3.1.1). In (b-c) transfer learning and added dense
layers, (d-e) warm-up and fine-tuning stage (see Section 3.1.2-3.1.3 ), and output to classify the stomach regions according to sub-category.

stomach regions may hinder the discovery of incipient lesions [14].
Furthermore, there is no trace of how a specialist carries out the pro-
cedure, or even if a minimum of regions were visited or for how
long they were observed. In this scenario, a second reader should
not only recognize the gastric anatomic regions of interest but also
ensure they are followed during a minimal time. As noted by Lee
et al. [14], learning the normal anatomical features of the stomach
is crucial for gastroenterologists to distinguish between the fundus,
body, and antrum during endoscopic procedures. However, master-
ing these skills can be challenging due to the long learning curve.
Furthermore, even with training, distinguishing between these re-
gions can still be difficult due to their similar appearance through
the endoscope, which is a serious limitation for this task, as experi-
enced gastroenterologists have noted.

2.1. Stomach region classification pipeline

In this work, we explore the feasibility of automatically classify-
ing different stomach regions, which should be visited during en-
doscopic procedures, using state-of-the-art deep image classifica-
tion methods. Figure 1.a shows the location of regions of interest
in the stomach along with sample images. Figure 1.b-d illustrates
the pipeline proposed in this work. The strategy used is transfer
learning, which leverages the ability of pre-trained deep models to
capture low-level visual features and use them as input for a classi-
fication module. The first stage of the pipeline, feature extraction,
corresponds to a CNN that has been pre-trained with a large set of
natural images. The second stage, classification, corresponds to a set
of dense layers which are trained using the problem-specific set of
training images. The output of the model is a softmax layer with six
neurons corresponding to the six different stomach region classes.

For the feature extraction stage, different state-of-the-art CNN
architectures were considered: AlexNet, the family of VGG ar-
chitectures (VGG-11-13-16) without batch normalization layers,
Inception-V3, GoogleNet, ResNet-18-34-50-101-152, EfficientNet-
B0-V2L, DenseNet-121-161-169-201, SqueezeNet-1 0-1 1, MobilNet-
V3, MnasNet-0 5-1 3 and ConvNext tiny[15].

2.2. Dataset

The database consists of 96 patients who underwent EGD proce-
dures. From the recorded video in white light, 2.054 anatomical

frames were obtained and manually labeled into six anatomical loca-
tions (see Table 1 columns 1-2) by an expert according to the system-
atic stomach screening protocol [5]. Each frame was captured at a
spatial resolution of 1.350×1.080 pixels. This study was performed
in line with the principles of the Declaration of Helsinki. Approval
was granted by the Ethics Committee of the Hospital Universitario
Nacional (approval number: CEI-2019-06-10).

2.3. Model training

The model is trained in two phases using a standard transfer learning
and fine-tuning approach. In the first phase, warmup, only the clas-
sification layers are modified by the training process and the feature
extraction layers are frozen. This allows the model to quickly learn
the transformation of the features that better capture the patterns of
the region images. In the second, phase, fine-tuning, the feature ex-
traction layers are unfrozen, this permits a further adaptation of the
visual features to the problem.

3. EVALUATION AND RESULTS

We introduce in this section the assessment and performance com-
parison of 23 architectures in the proposed classification tasks.

3.1. Experimental Setup

3.1.1. Dataset

The models were challenged under a 70 − 30 evaluation scheme
of the overall patients: 70% (67 cases - 1.383 frames) selected for
training-validation and 30% for testing (29 cases - 671 frames) as
presented in the Table 1.

L Sub Category Training
(n=58)

Validation
(n=9)

Testing
(n=29)

L0 Antrum 197 26 129
L1 Lower body 230 45 118
L2 Middle-upper body 221 31 119
L3 Fundus-cardia 220 35 122
L4 Middle-upper body 171 29 89
L5 Incisura 146 32 94

Table 1. Distribution of EGD database for the validation scheme (n:
patient, L: label, L3 to L5 correspond to retroflex view).



The input of the architectures were RGB images with shape 3×
H ×W , where H and W are 299 pixels for Inception-V3 and 224
pixels for all the other models considered. Additionally, the training
and validation sets were balanced by the number of frames at twice
the predominant class, and random data augmentation was applied,
including vertical or horizontal flips and rotations (±5◦) were used
to modulate capture variability. The number of frames per class was
set to 460 for the training set and 90 for the validation set. The
unbalanced proportion for the testing data set was preserved.

3.1.2. CNN configuration

In order to perform a direct comparison, the CNNs were trained in
two stages: (a) a warmup of the classification layers with a constant
learning rate during 10 epochs, and subsequently, (b) a fine-tuning
to the last 20% features layers during 40 epochs. Details of CNNs
and training configuration are presented below:

• Pre-trainned weights: ImageNet.
• Optimizer: Adam
• Loss function: Cross entropy.
• Dense layers: for ResNet, DenseNet, EfficientNet, MnasNet,

Inception-V3, and GoogleNet were added extra-layers: a dense
layer, then a batch Normalisation layer then a dropout layer, and
finally two dense layers with the output of 6 sub-anatomical cat-
egories presented in the in Table 1.

3.1.3. Training and hyper-parameter optimization

The warmup and fine-tuning stages were included in a hyperparam-
eter optimization across 40 trials monitoring the F-measure, to find
an optimal batch size, initial learning rate, and learning rate sched-
ule (gamma and step size). The values during optimization were the
following:

• Learning rate for warmup: 0, 001 with gamma = 0, 1.
• Range of hyperparameter values during optimization: batch

size [5-30], gamma [0, 1-0, 5], step size [5-10], and learning rate
[1e−3 to 1e−5].

3.2. Results

For each CNN, the model with the highest validation f1-score across
the trials was challenged with the testing set. The results were pro-
vided in four scenarios (A−D) using the same classification metric.
A. General CNN Results
The results of the proposed approach transfer learning, warmup,
and fine-tuning are listed in a top 10 macro-f1 score (see Table 2).
Clearly, ConvNext tiny and the family ResNet and VGG yield con-
sistently better results than other CNNs.

CNN [%] Acc. Prec. Recall F1
ConvNext tiny 87,332 87,251 87,332 87,256
ResNet152 86,438 86,669 86,438 86,294
VGG13 85,544 85,496 85,544 85,390
VGG11 85,395 85,253 85,395 85,227
VGG16 84,948 85,004 84,948 84,861
AlexNet 84,501 84,692 84,501 84,454
DenseNet201 84,650 84,735 84,650 84,409
ResNet34 84,650 84,958 84,650 84,250
ResNet101 84,352 84,679 84,352 84,250
SqueezeNet1 1 84,352 84,464 84,352 84,181

Table 2. Top-10 CNNs performance macro F1-score (Acc: Accu-
racy, Prec: macro-Precision, Recall: micro-Recall, F1: macro-F1).

B. Stomach region (sub-anatomical) results
ConvNext tiny architecture achieved the best TP = 586 and

TN = 3.270, also with the smallest FP, FN = 85 compared to all
other models. However, we observe a decrease in the performance
between the lower body vs the mid-upper body (L1-L2 in antegrade
view), and fundus-cardia vs middle-upper body (L3-L4 as presented
in Figure 2), these stomach regions are captured in retroflex view and
at the inverted axis where the endoscope is observed in the frame as
presented in Figure 3.

Fig. 2. Confusion Matrix ConvNext tiny.

C. Qualitative Results
Figure 3 displays prediction cases for L3 and L4 labels. True pos-
itives (L3) are explored with a retroflex view from fundus-cardia
capturing the lesser curvature (P14) and anterior wall (P53) views.
In addition, True negative (L4) examples photo documented the
middle-upper body in retroflex view observing the posterior wall
(P42) and anterior wall (P95). In contrast, False negative examples
include frames with lesser curvature (P45-P52) and False positives
with the anterior wall (P33-P87). Also, misclassified frames occur
in images that are similar like P53 (TP) vs P87 (FP) and P52 (FN)
vs P95 (TN).
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Fig. 3. Examples of different classification outcomes for images of
classes L3 and L4 (ConvNext tiny). The captions in the images rep-
resent the testing patient (i.e P95: Patient 95).
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Fig. 4. Ball chart reporting the top macro F1-score vs total parameters (feature extraction layers + classification layers).

D. Macro-F1 score and Model parameters
In Figure 4 we analyze the relationship between the model pa-

rameters (model complexity) and the macro f1-score metric. The
comparison among the performance of CNNs show the importance
of specific configurations, as relevant differences in the number of
parameters in order to learn the sub-anatomical class. It has to be
noted that larger parameters more time to predict. In general, ar-
chitectures with a relatively low number of parameters, such as the
ConvNext tiny achieve a higher f1 score than the VGG family (see
Figure 4). Additionally, there is not a linear relationship between
model parameters and f1 score metric.

4. CONCLUSIONS AND DISCUSSION

Comparative performance of different CNNs under similar condi-
tions was the main interest of this paper. However, different train-
ing strategies and/or hyperparameter settings should be evaluated de-
pending on the architecture.

The lack of a common validation framework is a frequent prob-
lem in endoscopy image analysis and this has limited the compari-
son between existing approaches, it is difficult to determine which
of them could have the actual advantage in clinical use. Then, the
next step is to construct a public database from patients of Hospi-
tal Universitario Nacional de Colombia to establish a baseline for a
comparative study of 22 anatomical stations (complete guidelines by
K. Yao [5]).
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