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ABSTRACT

Gastric cancer ranks as the fifth leading cause of cancer mortality
worldwide. The quality of upper gastrointestinal endoscopy is cru-
cial towards early identification of premalignant conditions and re-
lies on the endoscopist’s skill and thorough examination of stomach
landmarks. Unfortunately, it has been observed that existing cancer-
ous lesions may go undetected during examination. To standardize
the quality of this procedure, meticulous protocols have been pro-
posed. To support this process, we focused on developing a model
to identify the anatomical locations in esophagogastroduodenoscopy
images. This study advances endoscopic image classification by in-
corporating depth map estimation, essential for measuring distances
to specific landmarks. This method, analyzing 2,054 images from
96 patients across 13 gastric regions using the ConvNeXT architec-
ture with information fusion techniques, achieved an 87% F1 macro
score. This approach suggests that depth map integration can im-
prove stomach region classification, boosting prediction accuracy
and potentially reducing missed gastric lesions.

Index Terms— Endoscopy, Sub-anatomical region, Classifica-
tion, Fusion Information, Depth map.

1. INTRODUCTION

Gastric cancer remains a significant global health concern, with an
estimated 968,784 new cases diagnosed in 2022, making it the fifth
leading cause of cancer mortality worldwide, with 660,175 deaths
recorded in the same period [1]. Early detection is key to improv-
ing treatment outcomes for gastric cancer or precursor lesions, and
adopting effective screening strategies, including minimally invasive
screening and endoscopy [2]. Recently, the advances achieved in en-
doscopic technology, particularly in esophagogastroduodenoscopy
(EGD) or upper gastrointestinal endoscopy (UGIE), have positioned
it as the gold standard for diagnosis of upper gastrointestinal (UGI)
diseases. Widely used as a screening test for early gastric cancer
(EGC), EGD offers comprehensive visualization of the esophagus,
stomach, and proximal duodenum. Nevertheless, endoscopy is a
highly difficult procedure, with cognitive and technical factors com-
plicating the risk of misdiagnosis, a fact documented since between
20%–25% of lesions are missed for EGC [3] while 11.3% of UGI
cancers are not detected [4].

Several gastroenterology associations have developed protocols
to enhance the efficiency and quality of these procedures [5][6]
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[7]. The Japan Gastroenterological Endoscopy Society developed
a guideline for endoscopic diagnosis of EGC [8], mainly focused
on the technical skills to examine the upper gastrointestinal tract.
During the endoscopy, to avoid blind spots, K. Yao proposed a
systematic screening protocol for the stomach (SSS) [9]. Overall,
the SSS comprises a series of endoscopic photos of four quadrants
of the gastric antrum, body, and middle–upper body. In practice,
guidelines to map the entire stomach do exist but they are often
partially followed, especially in developing countries [10].

Therefore, reliable methodologies to alert endoscopists about
blind spots are needed. By incorporating computational methods
into medical practice, gastroenterologists can establish a frame-
work for ongoing quality monitoring and improvement, including
thorough examination of anatomical regions and minimum recom-
mended procedure times [11, 12]. These methods should serve as a
supplementary reader, offering guidance about the current anatom-
ical location within the patient’s upper gastrointestinal system and
providing quality indicators such as time spent exploring specific
organs or sub-anatomical regions.

Researchers have explored two main approaches: single and
multi-frame algorithms. In the literature, methods for anatomical
landmark detection in UGIE have been introduced with deep learn-
ing techniques. These methods involve frame classification by fine-
tuning of pre-trained image classification models: deep convolu-
tional neural networks [13]. They include the VGG models, the
Inception series, ResNet, and the contemporary convolutional neu-
ral network benchmark. For instance, Takiyama et al. [14] used a
GoogleNet architecture to accurately recognize 4 anatomical loca-
tions (larynx, esophagus, stomach, and duodenum), as well as 3 sub-
sequent sub-classifications specifically for stomach images. Wu et
al. [15] trained a VGG-16 network to classify gastric locations into
ten categories, and further refined the classification into 26 anatom-
ical parts (22 for the stomach, 2 for the esophagus, and 2 for the
duodenum). Additionally, Chang et al. [16] trained a ResNet archi-
tecture to classify EGD images into 8 anatomical locations, with an
additional location for the pharynx and Bravo et al [17] performed
a comparison of 23 networks to classify six gastric locations. In-
cluding temporal information, Li et al. [18] trained a combination
of Inception-V3 and Long short-term memory (LSTM) models with
adjacent frames to classify EGD images into 31 sites, ranging from
the hypopharynx to the duodenum. Bravo et al. [19] compared the
performance of a Gated Recurrent Unit (GRU) and a transformer en-
coder for classifying six gastric locations in video frame sequences
and organ detection in EGD videos.
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Fig. 1. Overview of the proposed methodology: (I) anatomical EGD sub-categories, (II) illustrates the workflow with : (a) initial data in
RGB and the estimated depth maps (Section 2.1), (b-c) data encoding and integration (Section 2.2), and (d) sub-category classification of
stomach regions (Section 3.2).

Despite sensitivity metrics generally showing positive results,
specific areas, notably the upper middle body including the lesser
curvature and posterior wall, continue to demonstrate suboptimal
performance, with sensitivity rates of 78% and 83% respectively, as
highlighted in [18]. According to Hosokawa’s studies [20], [21] have
identified a significant risk of missed EGC in these specific zones
compared to other areas. Improving performance could involve in-
tegrating information about the distance between the endoscope and
anatomical landmarks. This detail is vital so that experts can not
only accurately navigate specific structures, but also carry out effec-
tive photographic documentation, ensuring that they are located at a
distance that allows clear observation of the structure.

This paper significantly contributes by integrating depth map
estimations with the automatic identification of gastric landmarks.
This integration significantly improves the detection accuracy in vi-
tal body areas, especially in the lesser curvature and posterior wall.
Our study offers more reliable predictions in these critical areas.

2. METHODOLOGY

This work explores the potential of combining standard color im-
ages (RGB) and depth maps for identifying crucial stomach regions
during endoscopy. Two fusion approaches, early and late, are em-
ployed to integrate information from these static images. As de-
picted in Figure 1-I, the stomach is segmented into 13 distinct areas
based on their anatomical location and orientation. The proposed
methodology, outlined in Figure 1 (II), utilizes an independent Con-
volutional Neural Network (CNN) trained on both RGB and depth
maps through transfer learning (step b). Two fusion strategies are
then employed: early fusion, which combines RGB and depth data
in the input layers of the CNN (step c), and late fusion, which com-
bines the extracted features from separate models trained on each
data type (step b). Finally, the combined information is used in step
(d) to classify the sample into one of the 13 stomach region classes
through a dedicated classification layer.

2.1. Depth estimation

Endoscopic images capture the inner surface of the stomach, where
the shape, the 3D structure, is a function of the shading variations
concerning the depth (distance) and orientation of the camera-light

source. Light intensity diminishes with depth according to an in-
verse square law, where light intensity (I) is proportional to I ∝ 1

r2

(r being the radial depth from the light source). Then, a depth map in
endoscopy represents the distance between the camera-light source
and the stomach wall, a map that may be estimated using a tech-
nique known as shape-from-shading. However, estimating depth
from shading is challenging because the projection of a 2D image
to a 3D scene leads to multiple possible solutions. To constrain the
solution a set of assumptions were made: (a) the camera behaves like
a pinhole with a constant focal length, (b) the light source position
is nearly identical to the camera’s center, and (c) the tissue surface
(mucosa) is assumed to be Lambertian reflectance. This study used a
Shape-from-Shading Network (SfSNet) to estimate depth maps from
single RGB images via pixel-level regression [22]. This is a convo-
lutional neural network with an encoder-decoder layout employing:
EfficientNetB0 as backbone, long skip connections, and a custom
loss function for gastrointestinal surfaces. The loss function bal-
anced depth map reconstruction integrating three components: Lz

for pixel-wise depth, Le for edge detail (gradients), and Lc for cur-
vature (Hessian derivatives for curved edge as gastric folds):

L(d, d̂) = w1Lz(d, d̂)+w2Le(∇(d),∇(d̂))+w3Lc(H(d), H(d̂))

A public collection of synthetic endoscopy videos with depth
maps was used to train and test the SfSNet [23]. 80% was set
for training and 20% for testing. During the training, five hyper-
parameters were tuned in 40 trials. The network achieved a threshold
accuracy of 99.73% (decision threshold set in the ratio between the
ground-truth and estimated depth maps, herein set to 1.25, a com-
monly used strict value in the literature) and a root-mean-square
error of 3.66mm. Finally, the trained network estimates depth maps
from real endoscopy images.

2.2. Encoding and merging data representations

This methodology leverages a pre-trained ConvNeXT model devel-
oped by Liu et al. (2022) [24], selected for its performance in prior
benchmarks related to anatomical endoscopy classification [17]. The
approach is structured into two main stages. Initially, two indepen-
dent models are trained, each specializing in a different data modal-
ity: one model is dedicated to processing RGB (color) images, while
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Fig. 2. Overview of information fusion techniques: Early fusion integrates RGB and depth data at the input stage, Late fusion merges the
model embeddings for decision-making

the other specializes in analyzing depth maps, as illustrated in Fig-
ure 2-Modality. The subsequent phase involves a fusion module,
wherein two separate strategies for merging information are exam-
ined. The early fusion strategy integrates RGB and depth data at
the input level, as depicted in Figure 2-I. Alternatively, late fusion
integrates the individual embeddings of the trained RGB and depth
models, as shown in Figure 2-II. The RGB and depth models serve
as feature extractors, generating 768 unique features from the final
average pooling layer. Additionally, for depth maps (method c), the
model employs 49 histograms derived from spatial grids, capturing
distance relationships. The fusion of information is achieved through
two techniques: the concatenation of embeddings and the implemen-
tation of an attention layer. Attention mechanisms, employ a Gated
Recurrent Unit (GRU) and a Transformer encoder to learn a shared
feature space for both color and depth modalities, enabling informa-
tion integration. The obtained features through methods b-e are then
fed into a neural network to carry out classification tasks.

2.3. Dataset

The dataset includes data from 96 patients who underwent EGD pro-
cedures. The age of the participants averaged 62 ± 15.5 years, with
50.6% being female. A total of 2,054 frames from recorded white
light videos were manually categorized into 13 anatomical groups
by an expert, following the systematic stomach screening protocol
outlined by Yao et al. (2013) [9]. These frames were captured at a
spatial resolution of 1,350×1,080 pixels. The study adhered to the
principles of the Declaration of Helsinki, and ethical approval was
granted by the Ethics Committee of the Hospital Universitario Na-
cional (approval number: CEI-2019-06-10).

2.4. ConvNeXT training

The model undergoes a two-phase training process, following a con-
ventional transfer learning and fine-tuning approach. In the initial
phase, known as “warmup”, only the fully connected layers are un-
frozen for training, while the feature extraction layers remain frozen.
This strategic choice enables the model to rapidly acquire knowl-
edge of how to transform features in a manner that optimally cap-
tures the patterns within the regional images. In the second phase,
called “fine-tuning,” a set of layers are unfrozen. This allows the
entire model to adapt to the specific nuances of the regional image
classification problem.

3. EVALUATION AND RESULTS

This section outlines the evaluation and findings of the suggested
methods for integrating data representations, using the dataset de-
tailed in section 2.3. The objective is to offer a detailed assessment
of how effectively these methods fuse information from RGB and
depth maps to categorize anatomical regions in endoscopic images.

3.1. Experimental Setup

The models were evaluated using a dataset partitioned into 70% for
training and validation (58 cases with 1,185 frames for training and 9
cases with 198 frames for validation) and 30% for testing (compris-
ing 29 cases with 671 frames) across all patients in the dataset. The
CNN architectures received input data in the form of RGB images
with dimensions 3 × H × W , depth maps sized 1 × H × W , and
early fusion RGB-Depth images sized 4×H ×W . Here, H and W
denote the height and width, respectively, each standardized at 224
pixels according to the model’s requirements.

3.1.1. CNN configuration

To ensure a straightforward comparison, the training of the CNNs
was structured into two distinct phases: (a) Initially, there was a
“warm-up” phase focused on training the classification layers. Dur-
ing this phase, these layers were trained for 10 epochs with a con-
stant learning rate. (b) Following the warm-up phase, a fine-tuning
phase commenced, targeting the final 20% of the feature layers. This
fine-tuning was conducted over 100 epochs to optimize the model’s
performance. Details of CNNs and training configuration are pre-
sented below:

• Pre-trainned weights: ImageNet
• Optimizer: Adam
• Loss function: Weighted cross-entropy for class imbalance.
• Dense layers: 2 dense layers with dropout, and 13 output neu-

rons for sub-anatomical categories (see Figure1-I)

The warm-up and fine-tuning phases were part of a hyperparameter
optimization process conducted across 200 trials. During this opti-
mization, we monitored the F-measure to identify the optimal batch
size, initial learning rate, and learning rate schedule (gamma and step
size). This meticulous approach enabled the selection of the most ef-
fective model as a feature extractor, guided by its performance in the
validation phase.



3.1.2. Early and Late Fusion

In the early fusion strategy, depicted in Figure 2-I method(a), the
ConvNeXT model was modified to handle the additional depth infor-
mation. This adaptation involved expanding the first convolutional
layer from handling three RGB channels to four channels (includ-
ing depth). This aimed to enhance the model’s ability to process
multi-dimensional data while preserving its original architecture. To
maintain consistency, the original layer’s weights and biases were
replicated and incorporated into the expanded layer. Furthermore,
as detailed in Section 3.1.1, a comprehensive hyperparameter opti-
mization process was conducted over 200 trials during training.

In late fusion, as illustrated in Figure 2-II, we explore various
methods (b-e) for integrating color and depth information. For
method (d), a GRU model is configured with a single layer contain-
ing 128 hidden units. The method (e) Transformer model is set up
with one attention head and one transformer layer, processing input
feature vectors linearly reduced to a dimensionality of 256. Fur-
thermore, each method (b-e) incorporates a fully connected layer,
structured by the specifications detailed in subsection 3.1.1.

3.2. Results

For each architecture, the model with the highest validation f1-score
across the trials was challenged with the testing set. The results were
provided in two scenarios using the classification metrics.
A. General results

To assess the models’ performance, classification metrics and
their corresponding 95% confidence intervals for accuracy were cal-
culated, as detailed in Table 1. A normal approximation method was
employed for the confidence interval calculations.

Method - % Recall Precision F1 score CI
RGB 85.53 84.73 84.86 85.99± 2.48
Depth 79.30 79.26 79.02 80.63± 2.85

Method (a) 81.31 81.84 81.18 81.97± 2.77
Method (b) 83.22 84.27 83.43 84.50± 2.60
Method (c) 85.54 85.38 85.34 86.59± 2.40
Method (d) 88.09 86.97 87.42 88.38± 2.25
Method (e) 84.36 84.77 84.40 85.39± 2.55

Table 1. Performance metrics for the different evaluated methods.
Accuracy values are reported along with the confidence interval (CI)
with a 95% confidence level. The table presents macro recall, preci-
sion, and F1 score.

The fusion method denoted as (d), which employs an attention
layer with a Gated Recurrent Unit (GRU), yielded the most favorable
results, achieving a macro-F1 score of 87.42%. This score surpasses
the 84.86% score obtained from the trained RGB CNN by 2.56 per-
centage points. Moreover, from a clinical standpoint, method (d)
stands out as the more reliable choice. This method capitalizes on
a critical distance concept that directly correlates with photodocu-
mentation. This correlation arises due to the necessity of calculating
distances from the endoscope to specific anatomical landmarks. In
certain scenarios, these landmarks encompass the same gastric tis-
sue but require the consideration of different distances to observe it
more comprehensively or in finer detail. Such an approach can offer
invaluable support for estimations within the clinical context.
B. Stomach region (sub-anatomical) results

Table 2 illustrates the effectiveness of method (d) in 13 different
anatomical areas, emphasizing a set of classification metrics for each

anatomical landmark. Significant improvements are noted in areas
L1-2, L4-11, and L13, corresponding to different stomach regions
(see Figure1-I), when compared to a standard CNN trained on RGB
images.

Sensitivity Precision F1 Score
Label RGB M-d RGB M-d RGB M-d

L1 82.76 82.76 75.00 77.42 78.69 80.00
L2 78.38 81.08 80.56 81.08 79.45 81.08
L3 80.00 76.67 82.76 85.19 81.36 80.70
L4 81.82 84.85 84.38 84.85 83.08 84.85
L5 89.66 91.38 80.00 82.81 84.55 86.89
L6 80.99 84.30 94.23 94.44 87.11 89.08
L7 77.59 79.31 70.31 73.02 73.77 76.03
L8 94.17 95.00 94.17 96.61 94.17 95.80
L9 89.66 91.38 88.14 91.38 88.89 91.38
L10 93.94 96.97 91.18 91.43 92.54 94.12
L11 80.65 90.32 100.00 93.33 89.29 91.80
L12 82.35 91.18 82.35 91.18 82.35 91.18
L13 100.00 100.00 78.38 87.88 87.88 93.55

Table 2. Comparative performance of sensitivity, precision, and
F1 score for the RGB baseline model versus fusion information ap-
proach Method-d (M-d).

This advancement is particularly significant considering the high
risk of missing premalignant lesions in L6, and L8-9 regions, under-
scoring the need for more thorough examinations of these specific
zones.

4. CONCLUSIONS AND DISCUSSION

This research showcases advanced information fusion techniques,
incorporating crucial aspects such as distance measurement in en-
doluminal scenes, vital for the photodocumentation protocol. This
integration significantly elevates the accuracy and trustworthiness of
estimations. Looking ahead, the future work aims to include mul-
tiscale fused information, broadening the scope and depth of the
analysis. This improvement could enhance endoluminal analysis
and photodocumentation, providing a more thorough and detailed
approach in this field.

The next phase of our project involves the release of a public
database containing patient data from the Hospital Universitario Na-
cional de Colombia. This initiative will also focus on enhancing
depth estimation and implementing an automated system for encod-
ing spatiotemporal information. We will address significant chal-
lenges, such as the prevalent noise in esophagogastroduodenoscopy
procedures, and integrate quality indicators, thereby creating a more
cohesive and effective framework for endoscopic analysis.
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