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Abstract—Gastric cancer is the fourth deadliest cancer world-
wide. Esophagogastroduodenoscopy (EGD) is the preferred
method to diagnose upper gastrointestinal lesions, particularly
early gastric cancer. The procedure’s success relies on the
endoscopist’s experience and a comprehensive examination by
observing a set of anatomical landmarks. Most gastric neoplasias
are undetected during early stages, despite being present during
examinations, thus, it is essential to evaluate the quality and audit
the examination of anatomical regions during the endoscopy pro-
cedure. This study assesses the performance of a recurrent neural
network and transformer architecture in classifying anatomical
and sub-anatomical regions within the gastrointestinal tract. By
leveraging temporal information, the study aims to enhance the
accuracy of detecting these critical regions. We collected and
labeled video endoscopies from 32 patients, organizing them
into four organ categories. Additionally, we utilized 565 labeled
sequences from six sub-anatomical stomach regions for a separate
classification task. The trained networks achieved a macro F1-
score of 87.25% for organ classification and an 85.31% in
identifying stomach regions. These findings provide substantial
evidence supporting that temporal information improves the
capabilities of accurately identify upper gastrointestinal regions.

Index Terms—Endoscopy, Sequences, Sub-anatomical region,
Classification, GRU, Transformer encoder, Quality indicator.

I. INTRODUCTION

Gastric cancer (GC) ranks as the fourth leading cause
of cancer-related mortality globally and stands as the fifth
most prevalent malignancy [1]. Despite decreasing incidence
in some regions, gastric cancer remains a clinical challenge
as most cases are diagnosed at advanced stages, resulting
in poor prognosis and limited treatment options. Endoscopic
technology has advanced in recent decades and is now widely
used for early gastric cancer screening [2]. Esophagogastro-
duodenoscopy (EGD) is a diagnostic procedure that visually
examines the esophagus, stomach, and proximal duodenum.
However, gastroenterologists have reported missing 20%-40%
of early gastric cancer (EGC) cases during EGD [3].

Upper gastrointestinal (GI) endoscopy is the most prevalent
procedure in gastroenterology and holds paramount impor-
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tance in terms of ensuring the accurate detection of pre-
malignant and malignant lesions. However, acquiring profi-
ciency can be challenging due to the significant learning curve
involved. In this context, The Japan Gastroenterological En-
doscopy Society (JGES) has developed guidelines specifically
focused on the technical skills required for the endoscopic
diagnosis of early gastric cancer (EGC) [4]. Furthermore,
to enhance procedural efficiency and quality, two important
indicators were introduced. Firstly, the time spent on organ
exploration serves as a significant factor [5]. Additionally,
a systematic screening protocol for the stomach (SSS) was
implemented, consisting of a series of endoscopic photos
capturing the four quadrants of the gastric antrum, body, and
middle-upper body [6]. It is worth noting that while guidelines
exist to map the entire stomach, adherence to these guidelines
tends to be partial, particularly in developing countries [7].

In this context, integrating computational methods into the
medical practice can substantially support gastroenterologists
in adhering to the guidelines established for endoscopic proce-
dures such as mandatory anatomical regions to be examined
and minimum recommended procedure times [8], [9]. Such
methods should act as a navigational second reader, providing
clarity on the current anatomical location within the patient’s
upper gastrointestinal system and quality indicators such as
time spent at particular organs or stomach sub-regions, en-
suring comprehensive examination, and avoiding blind spots.
Incorporating these methods can substantially enhance the
efficiency of the endoscopy procedure by reducing the like-
lihood of overlooked or unexamined areas, reducing the miss-
rate of pre-cancerous and malignant lesions, and significantly
contributing to early diagnosis and treatment [10].

This paper presents two key contributions: first, we present a
method that leverages temporal and spatial information derived
from EGD videos to classify upper-gastrointestinal organs
and stomach sub-anatomical regions to automatically identify
anatomical landmarks and integrate them into the exploration
procedure. Second, capitalizing on the temporal information,
we quantify the organ and procedure exploration time. This
measure is widely accepted as a quality indicator for EGD
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Fig. 1. The proposed pipeline begins with a feature extraction step, represented by the purple box, using a Convolutional Neural Network (CNN) to extract
relevant features from sequences of frames (clips) from specific organs or stomach regions. These features, extracted on a frame-by-frame basis, are integrated
into a sequence that represents original clips of varying lengths. Following this, two sequence-based methods, depicted in gray boxes, leverage the spatial
and temporal information within the clips. These methods involve a Transformer Encoder Block and a Gated Recurrent Unit (GRU), focusing on two main

classification tasks: Organ Classification and Stomach Region Classification.

among endoscopists [11]. These contributions could support
experts during the procedure, ensuring adherence to high-
quality standards and reducing blind spots while exploring the
stomach.

In the field of EGD image classification, researchers have
explored two main approaches: spatial and temporal. Spatial
methods involve frame classification using CNN architectures.
For instance, Takiyama et al. [12] utilized a GoogleNet archi-
tecture to accurately recognize 4 anatomical locations (larynx,
esophagus, stomach, and duodenum), as well as 3 subsequent
sub-classifications specifically for stomach images. Wu et al.
[13] employed a VGG-16 network to classify gastric locations
into ten categories, and further refined the classification into 26
anatomical parts (22 for the stomach, 2 for the esophagus, and
2 for the duodenum). Additionally, Chang et al. [14] trained a
ResNet architecture to classify EGD images into 8 anatomical
locations, with an additional location for the pharynx. In a
temporal analysis, Li et al. [15] leveraged adjacent frames
and trained a combination of Inception-V3 and Long short-
term memory (LSTM) models to classify EGD images into
31 sites, ranging from the hypopharynx to the duodenum.

Current research has overlooked the potential of extracting
temporal context from classification tasks in EGD. This over-
sight becomes evident when considering the straightforward
quantification of time spent at specific organs or stomach
subregions through the classification of video sequences. Such
temporal data, made readily available through classification, is
a critical factor in EGD quality assessment and holds signifi-
cant value in the medical field. Furthermore, there is a notice-
able gap in research comparing the performance of different
architectures, particularly those employing video classification
approaches. As such, the exploration of sequence classification
architectures, especially those incorporating temporal informa-
tion under equivalent conditions, remains unexplored.

II. METHODOLOGY

In this work, we explore the potential of spatiotemporal
information to automatically classify organs and stomach
regions explored during video endoscopic procedures. Fig-
ure 1 presents an overview of our proposed approach, which
consists of two stages: the sequence embedding stage (see
Figure 1 purple box), where a sequence tensor is generated
by concatenating extracted features from a CNN from con-
tiguous frames of the video endoscopy procedure, and the
classification stage (see Figure 1 gray boxes), which employs
two sequence-based methods, namely a Recurrent Neural
Network (RNN) and Transformer encoder block that leverage
the temporal information present in EGD video sequences.
The model addresses two tasks (see Figure 1 blue box): the
first task focuses on classifying four different upper-GI organs
and out-of-body sequences, while the second task involves
classifying six distinct key regions of the stomach. By em-
ploying these sequence-based methods, we aim to effectively
capture temporal dependencies and intricate patterns in the
video sequences. This adaptability and flexibility in capturing
temporal context is particularly significant for our research,
as it allows us to determine an optimal temporal window
for contextual information. Our chosen models, such as the
GRU and Transformers, excel in learning complex temporal
relationships, rendering them particularly well-suited for the
analysis of video endoscopies.

A. Feature extraction

Frames are extracted from EGD videos at 30 frames per
second. We use a pre-trained ConvNeXT tiny [16] CNN model
to extract visual features of 224 by 224-pixel EGD video
frames. This CNN model, initially trained for stomach sub-
region classification, serves as a feature extractor for our
classification tasks. We obtain 768 features from the last



average pooling layer to represent the spatial information of
each frame.

B. Temporal information encoding

To efficiently process and analyze temporal data, the tempo-
ral information was encoded by creating tensors with features
of adjacent temporal windows of frames (see Figure 1 purple
box). This structure enables efficient processing and analysis
of sequential data. It consists of three dimensions: sequence
dimension for batch processing, temporal windows for captur-
ing dependencies across frames, and features dimension for de-
tailed characteristics within each frame. An effective approach
to leveraging the time dimension was established with the
GRU and Transformer architectures (see gray boxes Figure 1)
to model the relationship between consecutive frames, learn
the temporal dynamics within the data, and focus on invariant
spatiotemporal information.

C. Organ and Stomach classification tasks

In our research, we set up two distinct classification tasks,
each addressed separately. The initial task focuses on identi-
fying upper-GI organs, specifically distinguishing out-of-body,
pharynx, esophagus, stomach, and duodenum regions during
the procedure. The predictions obtained enable the assessment
of the examination time dedicated to each anatomical structure
providing a valuable quality indicator. This task is pertinent
to the quality evaluation of the procedure, as a recommended
minimum examination time is associated with each specific
organ.

The following task was structured to pinpoint six specific
sub-anatomical regions within the stomach as integral to the
classification process. These regions include in the antegrade
view: the Antrum, lower body, middle-upper body, and in
the retroflex view: fundus-cardia, middle-upper body, and
incisura, all of which are essential examination sites during
esophagogastroduodenoscopy as dictated by the protocol. The
objective is to eradicate blind spots and guarantee a systematic
and exhaustive examination of the stomach, which stands as
the main organ under focus during EGD.

D. Automatic quality assessment of the procedure

For the organ classification task, the primary objective
was to develop an automated system to identify anatomical
structures in the upper gastrointestinal tract while providing
an indicator that assesses the overall quality of the procedure.
This task necessitated pinpointing specific locations within
the digestive system with accuracy. A quality indicator was
formulated, based on the time exploration of each organ, to
audit and measure how the procedure correlates with the goals
of a correct upper-GI examination, guaranteeing a minimum
required exploration time per organ. Figure 2 provides a visual
depiction of the exploration time quality indicator derived from
upper-GI organ classification.

To compute this exploration time, the inference is performed
over the entire procedure. Independent of the temporal win-
dows chosen during training, our model provides a classifica-
tion of each frame of the procedure. The time spent on each

organ can be effectively calculated by coupling the per-frame
predicted organ with the frame rate.

E. Dataset

The database consists of 32 patients who underwent EGD.
The recorded video was in white light and Narrow Band
Imaging (NBI) and captured at 30 frames per second, all
videos were manually labeled by a resident in gastroenterol-
ogy. Additionally, 565 anatomical sequences were manually
labeled into six anatomical locations (see Table I columns 3-
4) by a resident according to the systematic stomach screening
protocol [6]. Each video was captured at a spatial resolution
of 1,920 x 1,080 and 1,200 x 720 pixels.

TABLE I
DISTRIBUTION OF EGD DATABASE

Category | Sequences Category Sequences
Organ (n=32) Stomach (n=26)
Out body 7,662 Antrum (a.v) 88
Pharynx 10,536 Lower body (a.v) 101
Esophagus 47,531 Middle-upper body (a.v) 100
Stomach 442,379 Fundus-cardia (r.v) 103
Duodenum 41,128 Middle-upper body (r.v) 79
Total 549,236 Incisura (r.v) 94

Abbreviations - n: patient, a.v : antegrade view, r.v: retroflex view

This study was performed in line with the principles of the
Declaration of Helsinki. Approval was granted by the Ethics
Committee of the Hospital Universitario Nacional (approval
number: CEI-2019-06-10).

I1I. EVALUATION AND RESULTS
A. Experimental Setup

The organ classification task involved sampling the en-
tire video with a frame step size of 1 where the center
frame represents the sequence label, thereby aligning with
sequencesVideo = framesVideo — (temporalWindow —
1). This experiment was conducted using a 90-10 split for
training and validation comprising 29 cases (~465,959 se-
quences) and 3 patients (~82,829 sequences) with a complete
procedure for testing. For sub-anatomical stomach region
classification, a 70-30 evaluation scheme was utilized. This
involved selecting 70% of the overall patients, amounting
to 20 cases (422 sequences), for training and validation.
The remaining 30% of patients, representing 6 cases (143
sequences) were reserved for testing purposes.

Two distinct architectures were employed. The GRU model
was configured with 128 hidden units and a dense layer
for classification. Simultaneously, the Transformer model was
designed with 8 attention heads and 2 transformer blocks, with
input feature vectors linearly projected down to a dimension
of 512. A dropout layer with a probability of P = 0.45 was
incorporated to mitigate overfitting. The optimal configura-
tions for both models were determined through automated
hyperparameter optimization using Optuna, over the course
of 100 trials [17]. The general configuration shared by both
models includes the Adam optimizer, with a learning rate
of 0.0001, and utilizes cosine annealing with warm restarts
with 10 iterations for the first restart, followed by a doubling
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Fig. 2. Presenting qualitative outcomes displaying predictions within a single video endoscopy session, derived from both the GRU and Transformer models.
These predictions were generated using a 5-second temporal window (150 frames) and are accompanied by time estimation indicators (GT: GroundTruth, and

GRU: Gated Recurrent Unit).

factor for subsequent restarts. The Cross-Entropy loss function,
augmented with class weights, was employed as the loss
metric. The training was conducted for 30 epochs or stopped if
the validation loss ceased to improve for 5 consecutive epochs.

B. Results

Both models were evaluated using the testing set with
the best model obtained in the validation set, representing
different patient’s complete EDG procedures. The results were
analyzed and presented in different scenarios, mainly differing
in the temporal window for sequences used during training.
The evaluation of the proposed approaches is based on the
weighted-F1, macro-F1, and accuracy scores calculated per
frame, considering its contextual information for the organ
task and by sequence for the identification of the subatomic
region of the stomach, as shown in Table II.

1) Organ and stomach region classification performance:
In the organ task, the transformer architecture demonstrated
superior performance when considering a wide temporal win-
dow. However, there were misclassifications mainly observed
in the pharynx, as shown in Figure 2 (see gray and yellow
of GT row compared to transformer predictions). These re-
gions presented challenges primarily due to limited sample
availability and a particularly large amount of noise during
the endoscope pass through the pharynx.

For the second task of stomach sub-region classification,
performance correlated with temporal windows ranging be-
tween 1 and 3 seconds. This observation is attributed to the
inspection process in which experts capture photos of specific
landmarks within those zones. The use of large temporal
windows could result in intersecting with other sub-regions
and potentially lead to less accurate classification. The best
result for this experimental setup was achieved using the se-
quence transformer architecture with 50 frames like temporal
windows.

2) Organ quality indicator: On the test set, the video
endoscopy procedure was labeled per frame using predictions
from the GRU model, enabling the extraction of an organ
exploration time indicator. Figure 2 illustrates the application
of predictions to a procedure within the test set, demonstrating
how the quantification of time per organ can be used as
an inspection time indicator. The mean square error (MSE)
between labels and prediction was 0.04, 0.08, and 0.10 for
Esophagus, Stomach, and Duodenum respectively.

TABLE I
QUANTITATIVE PERFORMANCE WITH DIFFERENT TEMPORAL WINDOWS

Organ task Stomach task
Metric Time GRU Transf. | Time GRU Transf.
Accuracy 86.48 88.19 83.22 83.22
Weighted F1 ~ 0.50  86.91 88.20 033 83.12 82.87
Macro F1 78.20 78.89 82.54 82.35
Accuracy 85.89 88.30 83.22 83.22
Weighted F1 1.00  86.29 88.42 050  82.96 82.73
Macro F1 77.46 79.83 82.41 82.34
Accuracy 86.59 88.43 84.62 82.52
Weighted F1 2.00 87.10 88.60 1.00  84.50 82.13
Macro F1 80.86 80.72 83.83 81.52
Accuracy 88.45 89.12 83.22 81.82
Weighted F1 3.00 88.52 89.13 133 82.67 81.34
Macro F1 80.44 81.34 81.99 80.76
Accuracy 87.15 89.82 82.52 85.31
Weighted F1 ~ 4.00  87.22 89.91 1.66  82.36 85.00
Macro F1 77.19 82.89 81.71 85.31
Accuracy 89.24  91.24 81.12 83.92
Weighted F1 5.00 89.33 91.42 2.00 80.62 83.78
Macro F1 82.51 87.25 79.88 83.35
Accuracy 89.17 89.06 83.92 80.42
Weighted F1 ~ 10.00  88.35 88.33 3.00 83.68 80.26
Macro F1 71.56 70.83 83.22 79.84

Abbreviations - Time: in seconds, Transf: Transformer encoder

IV. CONCLUSIONS AND DISCUSSION

Quantifying examination time and auditing the EGD pro-
cedure are vital steps toward enhancing the early detection
of upper GI neoplasia. Automatically quantifying procedure
times not only contributes to improving patient outcomes
but also serves as a quality indicator of endoscopy centers
worldwide. This paper presents an automated methodology for
encoding spatiotemporal information to efficiently audit the
upper endoscopy workflow. The comparison of various tem-
poral methodologies employed within consistent conditions in
this study demonstrates the potential benefits of incorporating
temporal information into the classification tasks of anatom-
ical and sub-anatomical regions during EGD. Furthermore, it
highlights the potential to derive procedural quality indicators
exclusively from these classifications, marking a significant
advancement in the field. Looking ahead, future research
will aim to confront challenges such as the substantial noise
prevalent in EGD procedures, particularly in regions like the
pharynx. The intention is to enhance the classification of
specific regions and anatomical transitions, combine the organ
and stomach classification tasks with the quality indicator in
a cohesive pipeline, and release an open database of EGD
videos, thereby contributing further to the field.
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